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Abstract
The electronic contribution to thermal conductivity is studied in models of underdoped cuprates
where the normal state has a pocketed Fermi surface with circumference ∼x (hole
concentration) and the superconducting state is formed by opening a gap in the Fermi pocket.
The physical consequences of the Fermi pocket are studied by comparing the thermal
conductivity computed in four different models: (1) an ordinary d-wave superconductor with
four Dirac Fermi points; (2) a normal metal with a pocketed Fermi surface; (3) a
superconductor formed by spinon–holon binding in the t–J model; (4) a phenomenological
d-wave Bardeen–Cooper–Schrieffer (BCS) superconductor with superconductivity formed by
opening a gap on the pocketed Fermi surface. Our results suggest that thermal conductivity
provides useful information to distinguish between different scenarios of the
normal-to-superconducting transition in underdoped cuprates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is now generally believed that the physics of the underdoped
cuprates holds the key to the understanding of high-Tc

cuprates [1–3]. The normal (pseudo-gap) state of underdoped
high-Tc is rather unconventional [2]. Instead of a normal Fermi
surface that obeys the Luttinger theorem [4], the pseudo-gap
state has a segmented or pocketed [5] Fermi surface with length
of the segment (Fermi arc) ∼x , the hole concentration [5–8].
An interesting question that arises naturally is how can a
superconductor be formed from a segmented or pocketed
Fermi surface? Is the mechanism responsible for the formation
of the pseudo-gap the same as the mechanism that eventually
leads to superconductivity?

In this paper, we compute the electronic contribution to
the thermal conductivity for a series of related models: (1)
an ordinary d-wave superconductor with four Dirac Fermi
points; (2) a normal metal with a pocketed Fermi surface;
(3) a superconductor arising from spinon–holon binding in
the t–J model [9]; (4) a phenomenological d-wave BCS
superconductor with superconductivity formed by opening a
gap on the pocketed Fermi surface. By comparing the results

between these different models, we show that the behavior
of thermal conductivity at a range of temperatures from zero
to above Tc provides useful information about the questions
raised above.

2. Model Hamiltonian and formalism

We first introduce a phenomenological model for the normal
state of underdoped cuprates with a pocketed Fermi surface,

Heff =
∑

�k,σ

ε1(�k)c(1)†
�kσ

c(1)

�kσ
+ ε2(�k)c(2)†

�kσ
c(2)

�kσ
, (1)

where ε1(2)(�k) = +(−)Ep
�k + εc, as shown in figure 1, and

Ep
�k =

√
ξ 2
�k + (�

p
�k)

2. The above Hamiltonian describes two

branches of fermions with dispersions ±Ep
�k + εc where εc ∼ x

is a phenomenological parameter. We shall consider ξ�k =
−teff[cos(kx)+cos(ky)]−μf +εc and �

p
�k = �p(T )[cos(kx)−

cos(ky)] hereafter, corresponding to a fermion system with
kinetic energy ξ�k and chemical potential μf gapped by a
pseudo-gap �

p
�k with dx2−y2 symmetry [2, 3, 10]. The electron
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Figure 1. Dispersion relation of ε1(�k) and ε2(�k), where we set
x = 0.05 and the corresponding chemical potential μf = −0.125.
There are two branch of fermions. The dispersion relation of the up
band is ε1(�k) and the low band dispersion relation is ε2(�k).

operator in this model is related to the fermion operators c1(2)

�kσ
s

by c�kσ = u(1)

�k c(1)

�kσ
+ u(2)

�k c(2)

�kσ
, where u1(2)

�k s are coherent factors
given by

u1(2)

�k =
√√√√1

2

(
1 + (−)

ξ�k
Ep

�k

)
.

The dispersion ε2(�k) describes hole pockets around the
nodal points �kn, with knx = ±kny and ξ�kn

= 0. The size
of the hole pocket is proportional to the hole concentration
x ∼ εc ∼ μ f , as shown in figure 2. The coherent factors u1(2)

�k s
lead to spectral weight differences between the ‘inner’ and
‘outer’ region of the hole pocket [3], with larger spectral weight
in the ‘inner’ region, leading to the observation of a Fermi
arc in the electron occupation number and photo-emission
experiments [2, 9] (see figure 1). The above form of Heff can
be derived, for example, from the spinon–holon binding theory
of the t–J model [3, 9], a model with a phenomenological
ansatz [11] and can also be obtained in a d-density wave state
(for μ = εc) [12].

Superconductivity can be introduced in the model by
adding an effective d-wave BCS pairing term to Heff,

Heff →
∑

i=1,2

⎡

⎣
∑

�k,σ

εi(�k)c(i)†
�kσ

c(i)
�kσ

− �̄�kc(i)

−�k↓c(i)
�k↑ − �̄�kc(i)†

�k↑ c(i)†
−�k↓

⎤

⎦

(2)
where �̄�k = �s(T )[cos(kx) − cos(ky)]. We assume here
that �̄�k has the same d-wave symmetry as the pseudo-gap but
has a different temperature-dependent magnitude governed by
�s(T ). The precise nature of �s(T ) and other parameters will
be discussed when we consider different models. We assume
for simplicity that the pairing gap �̄�k is the same for both
branches of fermions. The resulting energy dispersion relations
are E2

1(2) = |�̄�k |2 + [εc + (−)Ep
�k ]2 as shown in figure 3. We

note that the first branch of the fermion is fully gapped but
nodes exist on the second branch.

Figure 2. Contour line of ε2(�k), where we set x = 0.05 and the
corresponding μf = −0.125. The smallest red energy contour loop
around (kx , ky) = (±π/2,±π/2) represents the Fermi surface.

Starting from the above effective Hamiltonian, we can
compute the thermal conductivity with the Kubo formula [13].
For a system of fermions with a diagonalized BCS
Hamiltonian,

H =
∑

�k
�

†
�k h�k��k (3)

where

��k =
(

γ�k↑
γ

†
−�k↓

)
, hk =

(
E1(�k) 0

0 −E2(�k)

)
. (4)

The thermal conductivity is given by

κ0(T )

T
= 1

V

1

4π

1

T 2

∑

�k

∫ +∞

−∞
dω

[
− ∂

∂ω
nF(ω)

]
ω2

× Tr

[
∂h�k
∂�k A(�k, ω)

∂h�k
∂�k A(�k, ω)

]
≡
∑

�k

κ0(T, �k)

T
(5)

where nF(ω) = 1/(eβω + 1) is the fermion occupation number
and A(�k, ω) = −2 Im Gret(�k, iω) is the spectral function of the
matrix Green’s function [14]. The formula can be generalized
to the present case with two independent branches of fermions
straightforwardly, where

hk →
(

h(1)(�k) 0
0 h(2)(�k)

)

and

Gret(�k, iω) →
(

u(1)2
�k G(1)

ret (�k, iω) 0

0 u(2)2
�k G(2)

ret (�k, iω)

)
,

where h(i)(�k) and G(i)
ret(�k, iω) are the BCS Hamiltonian matrix

and Green’s function matrix for the branch (i) fermion,
respectively. Putting these together we obtain

κ(T )

T
=
∑

i=1,2

∑

�k
(u(i)

�k )2

(
κ

(i)
0 (T, �k)

T

)
(6)

where κ i
0(T, �k) (i = 1, 2) is the �k component of thermal

conductivity for the branch (i) BCS superconductor.
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(a)

(b)

Figure 3. Dispersion relation of ±Ei(�k)(i = 1, 2), with x = 0.05
and the corresponding chemical potential μf = −0.125. ±Ei (�k) are
two quasi-particle bands from branch (i) fermions. (a) Dispersion
relation of E1(�k) and −E1(�k); (b) dispersion relation of E2(�k) and
−E2(�k).

We shall assume that we are deep in the pseudo-
gap regime where kBT 	 �p or �s in our following
calculations. In this limit we can linearize the fermion
dispersion around the nodal points and concentrate on the
qualitative effect of superconductivity and the Fermi pocket
on thermal conductivity. Notice our purpose is very different
from the work in [15] which performed detailed analysis of the
thermal conductivity in conventional d-wave superconductors.

3. Thermal conductivity

To begin with, we first revisit ordinary d-wave superconductors
where the Fermi surface consists of four Dirac Fermi points.
In this case we set �p(T ) = 0 and �s(T ) = �0 > 0.
We note that thermal conductivity is a measure of quasi-
particle excitations only and the same expression for
thermal conductivity is obtained if we replace the d-wave
superconductor by a pseudo-gap metal with �p(T ) = �0,

Figure 4. Thermal conductivity for (1) a pure d-wave
superconducting state with four Dirac Fermi points and (2) a normal
metal with segmented Fermi surface (pseudo-gap state). We set
teff ∼ (0.75 + 18.0x)�0, � = 0.15�0 and εc = 6x�0 in the
numerical calculation.

εc = 0 and �s(T ) = 0. To illustrate this, we show in
figure 4 our numerical results for two different values of hole
concentration x = 0.03, 0.05 (solid circles and triangles). We
consider kBT 	 �0, and have chosen teff ∼ (0.75+18.0x)�0,
which are parameters obtained from the slave-boson mean-
field theory of the t–J model. We also introduce an inverse
lifetime τ−1 = � = 0.15�0 in the electron spectral functions
in our calculation. We note that in a realistic calculation of
thermal conductivity the temperature dependence of τ−1 has
to be included for quantitative comparison with experimental
data [15]. We have not included this here because we are
interested only in the qualitative effects of the Fermi pocket on
thermal conductivity that are insensitive to the precise behavior
of the parameters we have chosen. In the limit T → 0 we
recover the �-independent universal thermal conductivity for
d-wave superconductors,

κ0(T )

T
=
(

π2

3
k2

B

)
1

π2

v2
f + v2

2

vfv2
, (7)

where vf and v2 are the Fermi velocities perpendicular
and parallel to the ‘Fermi surface’ at the nodal points,
respectively [14, 15].

Next we consider a normal metal with a pocketed Fermi
surface by setting �p(T ) = �0 and �s(T ) = 0. The
pocket circumference is determined by setting εc = 6�0x .
It is expected that the thermal conductivity will be enhanced
compared with the d-wave superconductor at low temperature
because the presence of the Fermi surface leads to a larger
number of quasi-particles available at low temperature (kBT �
εc). The enhancement of thermal conductivity is obvious in
figure 4 (open circles and triangles) where we see a clear ‘up-
turn’ in the thermal conductivity at low temperature. The ‘up-
turn’ magnitude is larger for higher doping in our calculation
because of the larger Fermi pocket. In the limit T → 0, the
thermal conductivity can be calculated analytically with the
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Figure 5. Thermal conductivity of the spinon–holon superconductor
(solid line). We choose � = 0.15�0 and Tc = 0.09�0 in the
numerical calculation. The corresponding thermal conductivity for
the pure superconductor (solid triangle) and normal metal with
segmented Fermi surface (open triangle) are drawn for comparison.

following result,

κ0(T )

T
=
(

π2

3
k2

B

)
1

π2

v2
f + v2

2

vfv2

[
1 + εc

�
arctan

(εc

�

)]
. (8)

The first term in equation (8) is the usual contribution from
a d-wave superconductor, whereas the second term can be
understood as the contribution from a Drude metal with a
Fermi surface of length ∼x , assuming εc 
 �. This
contribution is proportional to �−1. The thermal conductivity
becomes indistinguishable between the superconductor and the
pseudo-gap states at higher temperature because we have set
the gap magnitudes (�0) to be the same.

We proceed to compute the thermal conductivity of a
specific model where the normal state with the Fermi pocket
is formed by bound states of spinons and holons, and the
superconducting state is formed by Bose condensation of
holons at T = Tc which leads to formation of electron
Cooper-pairs (s–h superconductor) [9]. In this case, the
system has the special feature that the pseudo-gap merges
smoothly into the superconducting gap and the two gaps
become indistinguishable in the limit T → 0. Mathematically,
the pseudo-gap and superconducting gaps are related to each
other by

�s(T ) = Z f(T )�0, �p(T ) = [1 − Z f(T )]�0 (9)

where Z f(T ) ∼ the Bose-condensation magnitude in slave-
boson mean-field theory. We shall assume Z f(T ) = 1 −
( T

Tc
)3/2 in the following calculations, corresponding to a three-

dimensional free boson gas where Z f(T ) = 0 at T > Tc, and
goes to 1 smoothly as T → 0 [9]. The results of the calculation
are shown in figure 5 for x = 0.05, where we also show
the corresponding results for a pure d-wave superconductor
(�s(T ) = �0,�p = 0) and a normal metal with a pocketed
Fermi surface (�s = 0, �p = �0) for comparison. We find
that the s–h superconductor thermal conductivity merges with

Figure 6. The thermal conductivity of phenomenological d-wave
BCS superconductors with different values of superconducting gap
�s(T ) = αZf(T )�0, α = 0.5, 1, 2. Other parameters remain the
same as in figure 5. The thermal conductivity of the corresponding
s–h superconductor is also shown for comparison.

the thermal conductivity of the corresponding pure d-wave
superconductor at T → 0 as a result of merging of the two gaps
(Z f → 1), increases faster than the thermal conductivity of the
corresponding d-wave superconductor at low temperature and
merges eventually with that of the pseudo-gap metal (Z f → 0)
at T > Tc. In particular, a ‘bump’-like feature appears in the
thermal conductivity at around Tc in the s–h superconductor,
which is absent in the thermal conductivity of pure d-wave
superconductors. As we shall see below, the ‘bump’ feature
indicates a crossover of thermal conductivity from the (normal
state) Fermi pocket behavior at T � Tc to the behavior of
a normal d-wave superconductor at T 	 Tc and is quite
independent of the microscopic details of the models.

Lastly, we consider a phenomenological d-wave super-
conductor where �p(T ) and �s(T ) come from different
microscopic origins and have no particular relation to one
another. In this case the thermal conductivity at T → 0 will be
given by formula equation (7) with different values of ṽf and ṽ2

which have no definite relation to the effective values vf and v2

extracted from the pseudo-gap phase.
To illustrate this we compute in figure 6 the thermal

conductivity for superconductors with �s(T ) = αZ f(T )�0,
�p(T ) = �0 for different values of α = 0.5, 1, 2. The
existence of a ‘bump’ feature and a change in qualitative
behavior of thermal conductivity below Tc is quite apparent.
In particular, we note that the T → 0 values of thermal
conductivity differ quite a lot from the corresponding values
of the s–h superconductor for α �= 1.

The thermal conductivity at very low temperature can be
computed analytically for our models (3) (α = 1) and (4)
(α �= 1) in a Sommerfeld expansion. We obtain to order T 2,

κ0(T )

T
=
(

π2

3
k2

B

)
1

π2

v2
f + (v̄2(T ))2

vfv̄2(T )

[
1 + 7π2

5

(
kBT

�

)2
]

,

(10)
where v̄2(T ) = αZ f(T )v2. In general, Z f(T ) ∼ 1 − aT β

at low temperature where a, β are positive numbers and the
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expression differs qualitatively from that of ordinary d-wave
superconductors where κ0(T )/T ∼ a′ + b′T 2 [16] as long as
β < 2.

4. Discussion

We note that we consider only the electronic contribution to the
thermal conductivity in our above analysis. However, phonons
also contribute significantly to the thermal conductivity except
at very low temperatures and a challenging question is how
we can separate the two contributions at the intermediate
range of temperature in which we are interested. It was
suggested in [17] that the phonon contributions can be
separated by studying the magnetic field dependence of
thermal conductivity. The technique suggested in the paper
may be too crude to pin down the fine structures in thermal
conductivity but is probably sufficient for identifying the broad
features suggested in our paper.

A frequently asked question in the study of high-Tc

cuprates is whether a small Fermi surface really exists in
the normal state of underdoped cuprates as is observed in
photo-emission [8] and magnetic oscillation [5] experiments.
By comparing the results from the different models we
studied above, we find that thermal conductivity at a range
of temperatures from zero to above Tc provides useful insight
into this question. We observe that thermal conductivity
of a normal metal with a small Fermi surface has an ‘up-
turn’ at low temperature, with the magnitude of the ‘up-
turn’ being similar in size to that of the Fermi pocket. The
corresponding superconductor formed from this normal state
will exhibit a ‘bump’ structure in thermal conductivity at
temperatures around Tc. This structure will disappear if the
Fermi pocket disappears and thermal conductivity provides
a test of its existence. A more direct test for the Fermi
pocket can be performed for cuprate superconductors with very
low Tc where superconductivity can be destroyed by a strong
magnetic field. In this case we expect that an up-turn in the
thermal conductivity with magnitude ∼x will be observed at
low temperature if the Fermi pocket exists. We note, however,
that new electronic states may form in the presence of strong
magnetic field and would invalidate our prediction.

Another frequently asked question is whether the
microscopic mechanism responsible for the pseudo-gap is the
same mechanism that eventually leads to superconductivity.
Our study suggests that if the superconductivity and pseudo-
gap are arising from the same microscopic origin, the two
gaps will become indistinguishable at low temperature and the
T → 0 value of thermal conductivity will be close to the
thermal conductivity value extrapolated from the T 
 Tc data
to T → 0. This ‘coincidence’ will not occur in general if the
two gaps arise from different microscopic origins. We note,
however, that we have assumed a constant � in our calculation,
and the extrapolation will not be accurate if �(T ) has a strong
temperature dependence.

5. Conclusion

Summarizing, using a phenomenological model, we examine
in this paper the electronic contribution to thermal conductivity

in several different situations: (1) an ordinary d-wave
superconductor with four Dirac Fermi points; (2) a normal
metal with a pocketed Fermi surface; (3) a superconductor
formed from spinon–holon binding in the t–J model; (4) a
phenomenological d-wave BCS superconductor formed by
opening a gap in a normal metal with a pocketed Fermi
surface. By comparing the results from these different models,
we find that the behavior of thermal conductivity at a range
of temperatures from zero to above Tc may provide useful
information to some of the frequently asked questions in the
study of underdoped high-Tc cuprates. We note that reliable
experimental data for thermal conductivity is so far available
only at T 	 Tc and accurate data at the whole range of
temperatures between T = 0 to Tc do not yet exist because of
large contributions to thermal conductivity from non-electronic
origins [17, 18]. However, a recent experimental study of
the impurity effect on low temperature thermal conductivity
indicates a breakdown of universal thermal conductivity
predicted for pure d-wave superconductors [15, 19] and a
separate experiment indicates that a Fermi pocket does not
exist in a underdoped LSCO sample which is metallic but
shows no superconductivity [20]. The latter experimental
result is in agreement with our model (3), which assumes that
the normal state is a state with no Bose condensation (Z f = 0,
�s(T ) = 0, �p(T ) = �0). These results suggest that thermal
conductivity is indeed a useful tool to probe the physics behind
high-Tc cuprates and our phenomenological analysis provides
useful guidance to interpret the experimental results.
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